I0Zone Application 4

Introduction

TargetFS-LKM has been run on 10Zone. I0Zone is a file system benchmark application used to
test various file operations for Linux file systems. Download information and more details about
the benchmark itself can be found at: http://www.iozone.org.

The following modifications were done to the 10Zone Makefile to make it run in Blunk’s test en-
vironment:

1) CC, GCC and CFLAGS were modified to reflect the tool chain and architecture options
specific for Blunk:

CC = $(TARGET_CROSS_COMPILE)gcc
CFLAGS = -Wall —-g —D_FILE_OFFSET_BITS=64 -march=armv5t -mtune=arm926ej-s

2) Disabled tool chain dependent feature, Async 1/O, by removing the relevant compilation
file (libsync.c) and taking out the ASYNC_ 10 switch.

Blunk’s test environment for the 10Zone benchmark consists of the LPC3250 developer’s kit
from Embedded Artists, running Ubuntu 11.04 and Linux kernel version 2.6.39.2. The board is
equipped with a 1Gbit NAND SLC flash memory from Samsung. The part number for the
memory is K9F1GO8UOA.

The 10Zone benchmark was run on TargetFS-LKM, JFFS2 and UBIFS. JFFS2 is a log struc-
tured Linux native file system designed specifically for flash devices — i.e. it does not need a
flash translation layer. The Unsorted Block Image File System (UBIFS) is a Linux native suc-
cessor to JFFS2.

For additional information on UBIFS consult http://www.linux-mtd.infradead.org/index.html.

For additional information on JFFS2 consult http://sourceware.org/jffs2/.

I0Zone was run for all three available TargetFS-LKM configurations: asynchronous, background
synchronization and synchronous to emphasize the strength and purpose of each of these con-
figurations and how well it fares against the native Linux solutions in both read and write per-
formance. Each configuration section, besides the specific reads/writes graphs, contains a CPU
load graph to show the system load imposed by each file system.

http://www.iozone.org/
http://www.linux-mtd.infradead.org/index.html
http://sourceware.org/jffs2/

4 10Zone Application

Asynchronous Configuration

In this configuration, the file system responds instantaneously to application requests. This con-
figuration is ideal for writing files that can be cached without being throttled by the kernel.

The defining strength of this configuration is its effective use of the Linux page cache in its write-
back mode. Caching data in RAM results in quick writes to the cache. The kernel will spawn a
background flusher task to sync the dirty cache pages to the storage media. Sustained through-
put in this configuration depends on the flusher task being able to keep the number of dirty pag-
es within the allowed limits.

If the application issues write requests at a rate significantly higher than the flusher write-back
rate, the kernel will throttle the application by forcing it into sleep state which can prove counter-
productive. An effective adoption of this configuration will need to ensure that the rate and size
of content created for writing is within the bounds of the dirty page quota assigned for each pro-
cess, something which is true for any Linux file system which implements write-back, including
UBIFS. The quota value is a kernel configuration option.

TargetFS-LKM induces less CPU load and is more deterministic when mapping dirty pages to
storage memory blocks. These are some of the reasons for its better throughput numbers and
its scalability.

4-2

10Zone Application 4

Write
80000
70000
60000
50000
Q
()]
L 40000
o
4
30000
20000
10000
File Size in KBs
—_
0
4 8 16 32 64 | 128 | 256 | 512 | 1024 | 2048 | 4096 | 8192
——JFFS2 3162 | 3138 | 3204 | 3155 | 3150 | 3223 | 3278 | 3369 | 3257 | 3305 | 3278 | 3354
——TFS-LKM | 60481 | 69975 | 64727 | 63596 | 53079 | 51945 | 52397 | 52675 | 53142 | 53027 | 52761 | 53324
—4—UBIFS |43463 40336 |50591 |39957 | 29877 | 28669 | 32248 | 31671 | 33257 | 33987 | 32818 | 47486

4-3

4 10Zone Application

Read

100000

90000

80000

70000

60000

50000

KB/sec

40000

30000

20000

10000

File Size in KBs

4 8 16 32 64 128 | 256 | 512 | 1024 | 2048 | 4096 | 8192

={ll=]JFFS2 6562273572 |72085|74933 8393685921 (81133 |82337|80174|81545|77703 | 86598

=0—TFS-LKM | 65087 | 72132 | 76848 | 78990 | 81437 | 82562 | 82656 | 82705 | 83182 | 83192 | 82904 | 83961

==fe=UBIFS 69924 | 75504 | 79260 | 80983 | 82860 | 83976 | 84384 | 84762 | 86308 | 85178 | 85041 | 86732

10Zone Application 4

CPU Load

2.5

1.5

Average

0.5

== JFFS2 0.78/0.84|1.02(1.08|1.06|1.26(1.39|1.49| 1.5 |1.57|1.71|1.65|1.68|1.71|1.59

=¢—TFS-LKM | 0.34 | 0.53 | 0.66 | 0.76 | 0.83 | 0.88 | 0.91 |0.94 | 0.94 | 0.97 | 0.98 | 1.05 | 1.04 | 1.03 | 1.1

=== UBIFS 0.360.61|0.72| 0.8 |0.86|0.98|1.27|1.48| 1.7 |1.79|1.79|1.85|1.89|2.07 | 2.11

45

4 10Zone Application

Background Synchronization Configuration

For large file sizes, file systems such as UBIFS, which are dependent on the Linux page cache,
are at a disadvantage because the files cannot be effectively cached. TargetFS-LKM is capable
of direct access to flash in this configuration which leads to lower system loads and faster
reads/writes.

Unlike the asynchronous configuration, in this configuration TargetFS-LKM employs the Linux
page cache in a write-through fashion, so it does not actually decouple the programming of file
data to the storage medium from the application context. It does however synchronize the file
system metadata in a background task. This configuration is frugal in its demand for CPU time
and does not create dirty cache pages. This configuration is thus ideal for background 1/O of file
sizes significantly larger than the application page cache quota.

File systems similar to UBIFS which insist on using the page cache at all times in write-back
mode will find it difficult to justify their performance when we consider the memory and CPU
load they exact for handling huge files within the constraints of available RAM.

For such use cases TargetFS-LKM in background sync mode performs just as fast and, at the
same time, consumes minimal system resources. This is quite evident from the graphs provided
below that show TargetFS-LKM matching and sometimes exceeding UBIFS throughput when
handling large file writes/reads.

4-6

10Zone Application 4

Write

4500

4000

3500

3000

2500

KB/sec

2000

1500

1000

500
File Size in KBs

4 8 16 32 64 | 128 | 256 | 512 | 1024 | 2048 | 4096 | 8192 (16384
== JFFS2 3373 | 3405 | 3366 | 3444 | 3469 | 3431 | 3281 | 3180 | 3236 | 3219 | 3235 | 3189 | 3202
=0=—TFS-LKM | 3871 | 3103 | 3110 | 3122 | 3125 | 3127 | 3158 | 3149 | 3159 | 3160 | 3148 | 3158 | 3151
=== UBIFS 3128 | 3177 | 3188 | 3164 | 3140 | 3148 | 3167 | 3162 | 3162 | 3169 | 3166 | 3195 | 3208

4 10Zone Application

Rewrite
3500
p-@‘_.quq::tn_ﬁ\t
3000
2500
o 2000
Q
(7,]
~
e
1500 .__H—.——.—.?.-‘.-_._H—._._
1000
500
File Size in KBs
0
4 8 16 32 64 128 256 512 | 1024 | 2048 | 4096 | 8192 16384
== JFFS2 1403 | 1415 | 1421 | 1430 | 1435 | 1461 | 1502 | 1478 | 1473 | 1478 | 1462 | 1455 | 1468
e=@=TFS-LKM | 3134 | 3065 | 3091 | 3091 | 3114 | 3119 | 3126 | 3139 | 3141 | 3134 | 3137 | 3130 | 3126
== UBIFS 3084 | 3108 | 3105 | 3092 | 3070 | 3081 | 3089 | 3080 | 3086 | 3081 | 3090 | 3082 | 3049

10Zone Application 4

Read
8000
7000
6000
el ﬁo--o--O--o--“""."
5000
H
Q
Q
L 4000
o
4
3000
2000
1000
File Size in KBs
0
1638
4| 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 4096 8192
—m-JFFS2 | 4558 | 4557 | 4579 | 4634 | 4640 | 4348 | 4380 | 4416 | 4449 | 4497 | 4606 | 4786 | 5464
—o—TFS-LKM | 5406 | 5479 | 5506 | 5517 | 5531 | 5519 | 5585 | 5608 | 5612 | 5711 | 5857 | 6152 | 6855
—4—UBIFS | 4532 | 4590 | 4642 | 4663 | 4674 | 4732 | 4721 | 4767 | 4774 | 4859 | 4975 | 5226 | 5836

4-9

4 10Zone Application

Reread
8000
7000
5000
(S]
Q
L 4000
o
4
3000
2000
1000
File Size in KBs
0
1638
4 8 16 32 64 128 | 256 | 512 | 1024 | 2048 | 4096 | 8192 4
== JFFS2 4542 | 4579 | 4620 | 4634 | 4638 | 4360 | 4431 | 4462 | 4537 | 4532 | 4660 | 4884 | 5411
=@—TFS-LKM | 5441 | 5475 | 5469 | 5515 | 5525 | 5570 | 5577 | 5563 | 5629 | 5704 | 5810 | 6139 | 6831
== UBIFS 4533 | 4568 | 4641 | 4649 | 4695 | 4727 | 4742 | 4766 | 4801 | 4860 | 4957 | 5228 | 5793

4-10

10Zone Application 4

CPU Load

2.5 A A

2

)
(o]]

()

1S
S
<

1

0.5

0

== JFFS2 0.74| 1.6 |2.16| 2.1 |2.45(2.19(2.67|2.31|2.57|2.36|2.45|2.31|2.39|2.49(2.24| 2.5 |2.31|2.26| 2.3
=¢=—TFS-LKM [0.28|1.22| 1.6 | 1.7 |1.86(1.86|1.76/1.91| 1.9 |1.82(1.79|1.92| 1.9 | 1.8 |1.77|1.92|1.89|1.91(1.73
==UBIFS [0.35/1.67(2.02(2.08|2.31(2.39|2.32|2.28|2.34|2.25|2.25|2.38|2.25|2.18|2.23|2.08|2.23|2.42(2.19

4-11

4 10Zone Application

Synchronous Configuration

In this configuration all file systems were mounted with syncs enabled. TargetFS-LKM is faster

especially for file sizes ranging up to 2MB.

In this configuration, every application API request that changes the file system metadata will
trigger a volume sync for TargetFS-LKM. This means that, upon recovery from an unexpected

power loss, on the next mount, TargetFS-LKM will revert to the state immediately prior to the

interrupted API request, or, in other words, all completed application API requests are immedi-

ately saved to the storage media.

Write
3500
/\" = —=C -— '47.?4
3000 ,l‘ - -
2500
'3) 2000
Q
n
~
(a'a)]
b 4 1500
1000
500
File Size in KBs
0
4 8 16 32 64 128 256 512 1024 2048
=il JFFS2 480 1084 1782 2368 2267 3075 2626 3036 3173 2993
=@=TFS-LKM | 3049 3126 3223 3177 3157 3168 3174 3171 3215 3179
UBIFS 1639 2055 2507 2704 2782 2959 3023 3029 3039 3259

4-12

10Zone Application 4

Read

90000

80000

70000

60000

30000

20000

10000

File Size in KBs

4 8 16 32 64 128 256 512 1024 2048

== JFFS2 66394 | 72693 | 76352 | 76638 | 79048 | 79275 | 80364 | 80462 | 81962 | 83629

=0—TFS-LKM| 68472 | 74602 | 78917 | 80699 | 82734 | 84120 | 84614 | 83810 | 84827 | 82421

=== UBIFS 65862 | 69426 | 73983 | 74012 | 76905 | 76298 | 78890 | 79710 | 81467 | 83817

4-13

4 10Zone Application

Random Read

90000
80000
70000 \
60000
O 50000
()]
(72}
~
[a'a]
N\ 40000
30000
20000
10000
File Size in KBs
0
4 8 16 32 64 128 256 512 1024 2048
== JFFS2 61385 | 69510 | 73581 | 75535 | 59312 | 74662 | 80272 | 80297 | 81893 | 62727
=——TFS-LKM| 59689 | 68230 | 74801 | 78302 | 81363 | 83363 | 83673 | 83937 | 84740 | 82421
=== UBIFS 60685 | 65968 | 71975 | 72737 | 76012 | 75405 | 79048 | 79364 | 80487 | 83564

4-14

10Zone Application 4

CPU Load
1.4
1
= —
0N os
S
> 0.6 /
0.4 Fé
0.2
0
1 2 3 4 5 6 7 8
——JFFS2 0.62 0.85 1.04 1.15 1.09 1.26 1.28 1.3
—o—TFS-LKM| 0.49 0.69 0.81 0.89 0.93 0.96 0.97 0.98
= UBIFS 0.36 0.68 0.87 0.92 0.95 0.97 0.82 0.85

4-15

4 10Zone Application

File/Directory Operations Time Measurements

Besides read/write throughput, the 10Zone benchmark measures average execution times for
various file and directory operations such as: mkdir, rmdir, file open, file access, link, unlink, etc.

For both JFFS2 and UBIFS, some of these operations, like file open, are performed solely
inside the Linux VFS layer without any other work done by the specific native Linux file system,
and thus, they exceed TargetFS-LKM's performance since it has to do additional internal work
to its meta information.

Furthermore, file systems such as JFFS2 keep all of their meta information in RAM, so, even for
operations that result in a change of meta state, the execution time is faster than for file systems
like TargetFS-LKM and UBIFS which have to cache theirs. While this is an advantage for small
volumes, it is a big detriment to scalability.

mkdir
5 9000
Q
n
>
c 8000
2
d
© 7000
(<))
o
(o)
6000
5000
4000
3000
2000
1000
==@==TFS-LKM 0 T T T T T T T T T T 1
—B—JFFS2 1 2 3 4 5 6 7 8 9 10 11
UBIFS fileops iteration #

4-16

10Zone Application 4

o 11000
Q
<
o> 10000
c
O
s 9000
©
S
o
Q 8000
o
7000
6000
5000
4000
3000
2000
1000
——TFS-LKM g
—B—JFFS2
~#—UBIFS

rmdir

10 11

fileops iteration #

4-17

4 10Zone Application

40000

35000

30000

operations/sec

25000

20000

15000

10000

5000

—=TFS-LKM g
== JFFS2
e UBIFS

open

e

1 2 3 4 5 6 7 8 9 10 11

fileops iteration #

4-18

10Zone Application 4

o 60000
Q
(7]
~
(7,]
c
© 50000
)
©
S
o
o
o
40000
30000
20000
10000

—=TFS-LKM g
== JFFS2
e UBIFS

daccess

W

10 11

fileops iteration #

4-19

4 10Zone Application

link
o 14000
]
v
S~
[%2)]
c
o 12000 —m
.; M
©
S
8
o 10000
8000
6000
o A,
2000
——TFS-LKM g

——JFFS2 1 2 3 4 5 6 7 8 9 10 11

=== UBIFS fileops iteration #

4-20

10Zone Application 4

16000

14000

12000

operations/sec

10000

8000

6000

4000

2000

—=TFS-LKM g
== JFFS2
e UBIFS

unlink

-

G

6 7 8 9 10 11

fileops iteration #

4-21

4 10Zone Application

Mount Times

One of the strengths of the TargetXFS/TargetFTL-NDM/TargetNDM is its fast, deterministic and
constant mount time, even in the case of recovery from unexpected power offs.

To showcase this, we have measured the time to mount a completely full 978 blocks volume on
Blunk’s test platform for TargetFS-LKM, JFFS2 and UBIFS.

For TargetFS-LKM we timed the kernel module load command and the volume mount
command:

» insmod targetsys.ko
» mount -t txfs mtd3 /mnt/txfs flash

For JFFS2 we timed the volume mount command:
» mount -t jffs2 mtd3 /mtn/flash mtd
For UBIFS we timed the device add command and the volume mount command:

» ubiattach /dev/ubi ctrl -m 3
» mount -t ubifs ubiO:benchmark /mnt/ubifs/

The table below and its corresponding graph contain the overall mount measurements:

command seconds
TFS-LKM insmod 0.17
mount 0.47
0.64 | Total |
JFFS2 mount | 18.75
18.75 | Total |
UBIFS ubiattach 0.39
mount 0.12
0.51 | Total |

4-22

10Zone Application 4

20

18

16

14

12

10

Mount Times (seconds)

TFS-LKM UBIFS

JFFS2

4-23

4 10Zone Application

Intentionally left blank.

4-24

